Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution

نویسندگان

  • Zhongjun Hu
  • Dianne W Taylor
  • Michael K Reedy
  • Robert J Edwards
  • Kenneth A Taylor
چکیده

We describe a cryo-electron microscopy three-dimensional image reconstruction of relaxed myosin II-containing thick filaments from the flight muscle of the giant water bug Lethocerus indicus. The relaxed thick filament structure is a key element of muscle physiology because it facilitates the reextension process following contraction. Conversely, the myosin heads must disrupt their relaxed arrangement to drive contraction. Previous models predicted that Lethocerus myosin was unique in having an intermolecular head-head interaction, as opposed to the intramolecular head-head interaction observed in all other species. In contrast to the predicted model, we find an intramolecular head-head interaction, which is similar to that of other thick filaments but oriented in a distinctly different way. The arrangement of myosin's long α-helical coiled-coil rod domain has been hypothesized as either curved layers or helical subfilaments. Our reconstruction is the first report having sufficient resolution to track the rod α helices in their native environment at resolutions ~5.5 Å, and it shows that the layer arrangement is correct for Lethocerus. Threading separate paths through the forest of myosin coiled coils are four nonmyosin peptides. We suggest that the unusual position of the heads and the rod arrangement separated by nonmyosin peptides are adaptations for mechanical signal transduction whereby applied tension disrupts the myosin heads as a component of stretch activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myofilin, a protein in the thick filaments of insect muscle.

Thick filaments in striated muscle are myosin polymers with a length and diameter that depend on the fibre type. In invertebrates, the length of the thick filaments varies widely in different muscles and additional proteins control filament assembly. Thick filaments in asynchronous insect flight muscle have an extremely regular structure, which is likely to be essential for the oscillatory cont...

متن کامل

Cytoskeletal proteins of insect muscle: location of zeelins in Lethocerus flight and leg muscle.

Asynchronous insect flight muscles produce oscillatory contractions and can contract at high frequency because they are activated by stretch as well as by Ca2+. Stretch activation depends on the high stiffness of the fibres and the regular structure of the filament lattice. Cytoskeletal proteins may be important in stabilising the lattice. Two proteins, zeelin 1 (35 kDa) and zeelin 2 (23 kDa), ...

متن کامل

Structure and function of myosin filaments.

Myosin filaments interact with actin to generate muscle contraction and many forms of cell motility. X-ray and electron microscopy (EM) studies have revealed the general organization of myosin molecules in relaxed filaments, but technical difficulties have prevented a detailed description. Recent studies using improved ultrastructural and image analysis techniques are overcoming these problems....

متن کامل

Mechanical Properties of Demembranated Flight Muscle Fibres from a Dragonfly

The mechanical properties of demembranated muscle fibres of synchronous flight muscle from a dragonfly Libellula quadrimaculata, asynchronous flight muscle from the giant waterbug Lethocerus indicus and synchronous psoas muscle from rabbit were compared in relaxed, active and rigor conditions. The properties were compared to the known structure and protein compositions of these muscles. We foun...

متن کامل

Drosophila paramyosin/miniparamyosin gene products show a large diversity in quantity, localization, and isoform pattern: a possible role in muscle maturation and function

The Drosophila paramyosin/miniparamyosin gene expresses two products of different molecular weight transcriptionally regulated from two different promoters. Distinct muscle types also have different relative amounts of myosin, paramyosin, and miniparamyosin, reflecting differences in the organization of their thick filaments. Immunofluorescence and EM data indicate that miniparamyosin is mainly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016